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Abstract

The generation of meteorological surfaces from point-source data is a difficult but necessary step required for modeling
ecological and hydrological processes across landscapes. To date, procedures to acquire, transform, and display meteorological

information geographically have been specifically tailored to individual studies. Here we offer a flexible, integrated system that
employs a relational database to store point information, a modular system incorporating a choice of weather data interpolation
methods, and a matrix inversion method that speeds computer calculations to display information on grids of any specified size, all
with minimal user intervention. We demonstrate the power of this integrated approach by cross-validating projected daily

meteorological surfaces derived from w1200 weather stations distributed across the continental United States for a year. We
performed cross-validations for five meteorological variables (solar radiation, minimum and maximum temperatures, humidity, and
precipitation) with a truncated Gaussian filter, ordinary kriging and inverse distance weighting and achieved comparable success

among all interpolation methods. Cross-validation computation time for ordinary kriging was reduced from 1 h to 3 min when we
incorporated the matrix inversion method. We demonstrated the system’s flexibility by displaying results at 8-km resolution for the
continental USA and at one-degree resolution for the globe.
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1. Introduction

Although landscape modeling of ecological and
hydrological processes commonly requires a similar set
of meteorological variables, a challenge exists in gather-
ing information from point-data sources and generating
from these a reasonable interpolation or extrapolation
across topographically variable conditions at a variety of
temporal and spatial scales. Environmental modeling is
scale independent ranging from small watershed studies
at fine resolutions (Band et al., 1993;White and Running,
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1994) to global studies at course resolutions (Nemani
et al., 2003a). Meteorological data for these types of
simulations are rarely available at the appropriate spatial
or temporal scale (Cramer et al., 1999; Eagleson, 1986;
Mummery and Battaglia, 2002).

To date, most modeling exercises have required the
development of a processing technique that must be
modified extensively to handle different sets of meteo-
rological data, their interpolation or extrapolation, and
display at a specified temporal and spatial scale. We
recognize, as do others (Baron et al., 1994; Pierce and
Running, 1995), that a flexible, more integrated system
would be highly desirable and that such a system must
be able to acquire and store, transform, and display
meteorological information in an efficient, accurate
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manner at multiple geographic scales without extensive
user intervention. We envision three discrete compo-
nents that must be integrated.

The first system component involves data acquisition
and storage. If we store point-source observations in
a relational database with an open standard interface we
can remain independent of any specific database
management system. We can then use this relational
database as a foundation to develop scaleable applica-
tions that use data efficiently while still providing point-
source data access to nearly any data-aware program.
The acquisition and storage of highly variable meteoro-
logical data can be done efficiently by incorporating
a relational format using structured query language
(SQL). SQL provides a simple, common interface to
allow spatial and temporal selection and summarization
of data with ease and efficiency.

The second system component involves the incorpo-
ration of techniques to transform point-source weather
data into continuous variables that can be displayed
spatially. Many applications have tailored interpolation
processes specifically for generating surfaces of weather
data (Daly and Neilson, 1994; Fleming et al., 2000;
Goovaerts, 2000; Hutchinson, 1998; Jeffrey et al., 2001;
Price et al., 2000; Thornton et al., 1997). These
applications use a variety of mathematical techniques,
such as Ordinary Kriging, truncated Gaussian filters or
thin plate smoothing splines, but all have the same goal:
to generate surfaces of weather data over large spatial
scales. We should adapt a modular framework to allow
for the substitution of one technique for another
without affecting the format of the acquired data or
the products generated. Modularity promotes system
flexibility and adaptation to changing research needs at
different scales (Voinov et al., 2004).

The third system component involves the display of
meteorological surfaces at any selected spatial scale.
Earth science applications are focusing on modeling
processes at multiple scales in near real time (Nemani
et al., 2003b) and such a system must be able to
efficiently generate meteorological data over a compara-
ble spatial extent. Using inputs of the wrong spatial
scale can significantly bias model predictions (Pierce and
Running, 1995). We offer in this paper the application of
such a flexible system based on criteria provided by the
user to the mathematical processor that can generate
meteorological data surfaces at any spatial scale.

Briefly, we automatically retrieve and store meteoro-
logical data in an SQL database, interpolate those data
using a variety of mathematical techniques and display
the results over multiple spatial extents. We test the
system by implementing three different mathematical
processors that interpolate meteorological point-source
data: ordinary kriging, a truncated Gaussian filter, and
inverse distance weighting and compare the results of
these three processors using w1200 daily station
observations over the continental United States for
2002. We illustrate the advantages of an integrated
system by presenting daily meteorological data in-
terpolated across the United States at 8-km resolution
on the continent and at one-degree grids at the global
scale. We contend that these characteristics culminate in
a system that can rapidly adapt to meet the meteoro-
logical data needs of environmental modelers.

2. Methods

2.1. Surface observations gridding system (SOGS)

We named the flexible, integrated system that we
developed the surface observation gridding system
(SOGS). A flow diagram of the system is shown in
Fig. 1 that indicates its modular design and functional
relationships between data acquisition, storage, interpo-
lation and projection as surface variables on multiple
spatial scales.

2.2. Data retrieval and storage

We obtained daily global weather data (Global
Surface Summary of the Day) from the National
Climate Data Center (NCDC). The system automati-
cally retrieves the most current data from the World
Wide Web and stores these data in the relational
database. Currently, these summaries are updated by
the NCDC about weekly and provide daily observations
of maximum, minimum, average and dewpoint temper-
atures, and precipitation for approximately 6000 global
stations. Observations are available from late 1994 to
the present. New data sources can be added simply by
creating and populating new database tables based on
the new data formats and all data can be merged into
a superset data source using SQL for use in the
interpolation system. An example set of daily global
observations from NCDC is shown in Fig. 2.

2.3. Interpolation

The interpolation routine was designed to be modular
such that the interface to the routine remains the same
while the technique itself could easily be switched to use
another method. The interpolation routine requires a set
of spatially explicit input observations and the location
and elevation of the prediction point. It generates
a prediction from these inputs. This ensures that other
methods can be added with minimal effort. A flow
diagram of the modular interpolation logic is shown in
Fig. 3. In all cases, locations are specified as longitude
(x) (decimal degrees), latitude ( y) (decimal degrees) and
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Fig. 1. Flow diagram of the SOGS. Three main components that comprise the system are: data retrieval and storage, interpolation and output

handling. Data retrieval is configured to automatically retrieve the most recent data available and insert those data into the SQL database.

Interpolation methods are modular and allow maximum flexibility in implementing new routines as they become available. Outputs are generated on

the prediction grid that is determined by the latitude, longitude, elevation and mask layers.
elevation (z) (meters). Elevation is explicitly considered
as a third dimension due to the covariance of many
weather variables with changes in elevation (Barry and
Chorley, 1998).

2.4. Generating products

Output generation is linked to the prediction grid
using four raster inputs: latitude, longitude, elevation
and a simulation mask. The simulation mask determines
the presence or absence of a prediction point. Longi-
tude, latitude and elevation layers determine the
location and topography of the prediction point,
respectively. Although latitude and longitude are used
in this example, it is still possible to use other grid
coordinates such as UTM. Prediction points outside the
region of interest determined by the simulation mask are
not estimated and are set to a fill value. To assess the
ease with which new spatial resolutions could be
modeled, we generated two test input raster sets: one
for the continental United States at eight kilometer
resolution and one for the globe at one degree resolution
and used these test inputs to interpolate example raster
weather data images at those resolutions for May 4th,
2003.

2.5. Interpolation implementation

To test the modularity of the system, we implemented
ordinary kriging (OK) (Brooker, 1979), a truncated
Gaussian filter (TGF) (Thornton et al., 1997) and in-
verse distance weighting (IDW) (Isaaks and Srivastava,
1989) as interpolators within the SOGS framework. OK
calculates predictions using two components: a matrix
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Fig. 2. Sample set of global, daily observations from the NCDC Global Surface Summary of the Day for May 4th, 2003.
of covariances between observations and a matrix of
covariances between the observations and the prediction
point. These covariances were determined from a spher-
ical semivariogram model. TGF does not consider the
covariances between observations, weighting each ob-
servation’s contribution to the prediction only by its
distance to the prediction. It assesses each station’s
contribution by a Gaussian weighting function that is
truncated at some distance from the prediction point.
Inverse distance weighting is similar to TGF except that
it weighs the contribution of each observation by the
squared reciprocal of its distance to the prediction point.
The IDW method truncates observations at some
distance from the prediction point in the same way as

Fig. 3. System flow diagram for modular interpolation logic used in

SOGS. Prediction locations (X0, Y0, Z0) and observed data (X1..n, Y1..n,

Z1..n, R1..n) are input into the interpolation routine and that routine

generates a prediction (R0) based on the observed data and some

weighting scheme.
TGF. Specific details for each of the key weather
variables interpolated are detailed below.

Because we are interested in optimizing speed and
performance, the run was accomplished using identical
model parameters for each respective method for all five
variables. This allowed the calculation of a single
observation weight for all interpolated variables. Fixing
model parameters also ensures that the same observa-
tions are included for each method for each prediction.
Each method has a truncation distance and if these were
allowed to vary, different numbers of observations
would be allowed for each prediction with each method,
possibly confounding the comparison of the three
interpolators. Fixing these parameters therefore allows
for a more direct comparison between the methods.
These fixed model parameters for each of the methods
are shown in Table 1.

Table 1

Model parameters for ordinary kriging, the truncated Gaussian filter

and inverse distance weighting implemented in SOGS

Ordinary kriging

Sill 10.0

Range 5.5(
Nugget 0.0

Truncated Gaussian filter

Shape parameter (a) 6.5

Truncation radius (Rp) 5.5(
Inverse distance weighting

Power 2.0

Truncation radius 5.5(

Range and truncation radius parameters are in decimal degrees.

Variogram sill and nugget values are in variance units of either (C 2 for

temperatures, (W m�2)2 for solar radiation and cm2 for precipitation.

The truncated Gaussian filter shape parameter (a) and inverse distance

weighting power parameter are dimensionless.
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2.6. Air temperatures

As part of the system, maximum, minimum, average
and dewpoint temperature observations were detrended
prior to interpolation by reducing them to equivalent
potential temperature at 1000 millibars (Barry and
Chorley, 1998) using surface pressures estimated as
a fixed relationship of elevation to surface pressure
(Iribane and Godson, 1981). Once predictions were
made, potential temperatures were reversed to surface
temperatures using estimates of surface pressure at the
predicted elevation points.

2.7. Precipitation occurrence and amount

Precipitation is a difficult quantity to interpolate
because, due to its discrete nature, it is non-stationary at
daily time steps. Therefore, precipitation interpolation is
a two-step process: the determination of precipitation
occurrence and amount. First, we must define regions
where precipitation is likely to occur. Second, we
interpolate precipitation amounts contingent on the
probability of the occurrence of precipitation at that
point. To accomplish this, the OK method uses
a combination of indicator kriging (IK) and OK. IK is
the categorical equivalent of OK and is achieved by
using an indicator variable that represents the occur-
rence (1) or non-occurrence (0) of precipitation at
a given station as an input to OK. The results of IK
give predictions that are expressed between 0 and 1 and
represent the probability of a precipitation event at
a given location. This method has proved useful in
improving estimates of non-stationary quantities in
other geostatistical analyses (Marinoni, 2003). TGF
precipitation predictions were performed by first de-
termining the precipitation occurrence probability
(POP) (Thornton et al., 1997) which is comparable to
the results obtained from IK. IDW precipitation
occurrence predictions were performed using the POP
method but replacing the Gaussian weighting function
with the IDW function. If the likelihood of precipita-
tion at a given prediction point for a given method
exceeds the user-defined probability (0.54 for our
application), interpolation of precipitation amount is
performed at that point using their respective interpo-
lation method.

2.8. Vapor pressure deficit (VPD) and solar radiation

We estimated actual and saturation vapor pressure
(Campbell and Norman, 1998) using the interpolated
dewpoint and average daily temperatures and calculated
VPD as the difference between saturation and actual
vapor pressures. We estimated solar radiation using the
method of Thornton et al. (1997) in DAYMET. For
simplicity, we estimated flat-plane radiation, setting
slope to zero.

2.9. Cross-validation

To test the system, we performed cross-validation for
daily maximum and minimum temperature, vapor
pressure deficit, solar radiation and precipitation over
the Continental United States for the entire year of
2002, excluding 4 missing days, using OK, the TGF and
IDW. For each variable, we estimated the mean
absolute error (MAE) and bias to quantify the accuracy
and precision of our predictions.

Cross-validation can be computationally demanding
for OK if the number of stations used in interpolation is
large, as is the case with SOGS. For example, if n is the
number of observations, the addition of a single
observation used in interpolation represents a 2nC1
increase in size of the inter-observation covariance
matrix, resulting in an exponential increase in comput-
ing time with increasing numbers of observations. OK
cross-validation is particularly challenging because each
iteration requires the inversion of an n!n matrix of
inter-observation covariances. Because the resulting
inverted covariance matrix is a square, symmetric
matrix, we were able to derive a procedure for
calculating the equivalent inverse of the resulting matrix,
through row and column removal techniques, which
does not require the iterative calculation of the larger
matrix inverse. Although many stations in the prediction
would have zero weight, this technique is more efficient
because it does not require the point-wise filtering of
local stations at each prediction point. Depending on the
size of the prediction grid, this may be a computationally
expensive process. Using this technique, cross-validation
time scales linearly with increases in station density
rather than exponentially, significantly reducing cross-
validation time.

The matrix inverse routine works as follows. Let M
be an n!n, invertible, symmetric matrix (a covariance
matrix for our purposes). Once inverted, theM�1 matrix
is partitioned into submatrices as follows according to
the row and column of the inverted matrix that you wish
to remove. (For crossvalidation requiring removal of the
ith observation, the ith row and column of M�1 is
removed).

M�1 ¼

Aði�1Þ!ði�1Þ fði�1Þ!1 Bði�1Þ!ðn�iÞ

f#1!ði�1Þ e1!1 g#1!ðn�iÞ

B#ðn�iÞ!ði�1Þ gðn�iÞ!1 Dðn�iÞ!ðn�iÞ

2
664

3
775 ð1Þ

where the ith row and column are [f# e g#] and [f e g]#,
respectively. i denotes the row and column to remove
from the matrix. A new matrix H is constructed with the
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removal of the ith row and column using the subma-
trices A, B, B# and D as follows:

H ¼
A B

B# D

" #
ð2Þ

and a new vector is formed with the removed column i
omitting the intersection value ei,i as follows:

k ¼
f

g

" #
ð3Þ

The inverse of M with the ith row and column removed,
denoted M�1

ð�iÞ, can then be found as:

M�1
ð�iÞ ¼ H� kk#=e ð4Þ

Finding the resulting matrix after removing the ith
row and column thus reduces to matrix and arithmetic
multiplication, division and subtraction operations as
opposed to a computationally expensive matrix in-
version routine. This routine works for any symmetric,
invertible matrix but is used in SOGS on the matrix of
inter-station covariances for the OK interpolator.

To quantify the speed increases gained from this
matrix inversion shortcut, we performed cross-valida-
tion twice, once using this matrix inversion routine and
the other iteratively inverting the inter-station covari-
ance matrix with increasing station densities from 100 to
600 stations and measured the time required to complete
the calculation for each method. All processing was
performed on a Redhat Linux 7.3 workstation with dual
1.6 Ghz AMD Athlon processors and 2 Gb of RAM.

3. Results

3.1. Cross-validation

Results of daily cross-validation for ordinary kriging
(OK), the truncated Gaussian filter (TGF) and inverse
distance weighting (IDW) for the continental United
States for 2002 are presented in Table 2. In general the
three test methods performed similarly across all
variables. Temperatures predicted with OK had lower
MAE than those predicted with TGF and IDW but no
method showed a marked improvement over the other.
VPD bias predicted with OK was high relative to the
biases in the TGF and IDW. Precipitation occurrence/
non-occurrence was predicted with 85% accuracy using
Indicator Kriging, 88% using TGF and 87% using
IDW. The error matrices for these precipitation
occurrence methods are presented in Table 3.

3.2. Resolution change example

The flexibility of the system for use at two widely
different spatial scales is demonstrated in Fig. 4. The
plates on the left show the results of the one-degree
square resolution for the globe for each of the five
response variables estimated with SOGS for May 4th,
2003. The plates on the right show the results of
a separate run on an 8-km square resolution for the
Continental United States for the same variables and
day. We see the influence of lack of data on the one-
degree resolution product, indicated by a large white
stripe through central Africa. This can also be seen in
the distribution of observations shown in Fig. 2.

3.3. Cross-validation efficiency test

We found that cross-validation time was significantly
reduced using a cross-validation shortcut. If the inter-
observation covariance matrix was inverted during each
iteration of cross-validation, even with only 600
stations, cross-validation would take approximately
1 h. When the matrix inversion shortcut was used, the
same cross-validation took approximately 3 min. In
general, the process of cross-validation was scaled from
an exponential to linear increase in time with the
addition of a single station without loss of precision.
Fig. 5 shows the comparisons of execution time based
on increasing the number of observations.

4. Discussion

Although there are a number of common desktop
software applications that can both parse the available
Table 2

SOGS cross-validation results for each of the five key weather variables for the Continental United States for 2002 using ordinary kriging, the

truncated Gaussian filter and inverse distance weighting

Ordinary kriging Truncated Gaussian filter Inverse distance weighting

MAE Bias MAE Bias MAE Bias

Tmax ((C) 1.6 0.03 1.9 �0.01 1.9 0.11

Tmin ((C) 1.9 0.01 2.0 0.01 2.0 0.02

Precipitation (cm) 0.48 0.35 0.49 0.29 0.47 0.27

VPD (Pa) 293.1 �196.6 167.5 7.2 141.6 9.1

Solar radiation (W/m2) 43.5 �3.4 47.7 �8.7 43.1 �4.2
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weather data and interpolate these data to continuous
surfaces, these software products lack the ability to
perform these processes repetitively or with different
mathematical processors without extensive software
modifications. Environmental modeling studies often
require historical datasets in order to properly account
for long-term climatic trends (Cramer et al., 1999). In
some cases, these datasets are created daily for over
a 100 years, such as those used in the Vegetation/
Ecosystem Modeling and Analysis Project (Schimel
et al., 2000). Such datasets would be tedious to create
using common desktop software because of the intense
amount of user interaction required. Our system can
generate such data with minimal initial user interaction
over any period of interest or spatial resolution un-
attended.

Our comparisons between OK, the TGF and IDW
interpolation methods show very small differences
between the three logics. It is, however, important to
note that OK develops interpolation weights not only on
the relationship between the prediction point and
observation point but rather a combination of those
relationships and the relationships between observation
points. Clustered stations have their weights reduced
because they do not offer independent information to
the prediction. This corrects for the uneven or clumped
distribution of stations commonly found in spatially
explicit point data, eliminating the need to cycle through
observation data in an effort to estimate local truncation
radii (Thornton et al., 1997). Our implementation is
more of an empirical rather than statistical implementa-
tion because we used fixed variogram parameters. This
ignores one of the strengths of OK: the ability to tailor
the interpolator to the spatial correlation of the input
observations. For this reason, we would ideally derive
our model parameters from a model fit to an empirical
variogram calculated from the observed data. In fact,
this is part of the program but for our analysis, it was
not implemented because we were interested in a more
direct comparison of the distance-based interpolators.

Table 3

Error matrix for prediction of precipitation occurrence/non-occur-

rence using indicator kriging (ordinary kriging with indicator

variables), the truncated Gaussian filter and inverse distance weighting

Measured

precipitation (%)

No measured

precipitation (%)

Indicator kriging

Predicted precipitation 5 6

No predicted precipitation 9 80

Truncated Gaussian filter

Predicted precipitation 4 2

No predicted precipitation 10 84

Inverse distance weighting

Predicted precipitation 4 3

No predicted precipitation 10 83
Even without this process, we still benefit from ordinary
kriging’s ability to correct weights under conditions of
spatially heterogeneous observations.

Errors for most variables were similar between our
three tested interpolators. VPD was the only variable
where marked differences in error statistics were appar-
ent. Because the estimation of VPD relies on estimating
not one but two temperatures, asymmetries in estimation
errors could lead to larger errors in VPD, particularly at
higher temperatures. This is possibly why VPD errors
were higher even though temperature prediction errors
were lower using OK. For example, with similar
predictions of dewpoint temperatures between methods,
if the error for average temperature were consistently
lower with one method, we would underestimate VPD
and have a negative bias for that method, as was observed
in the error statistics for OK. Equal errors in temperature
estimations might represent an equal shift up the SVP
curve and thus the estimatedVPDmight be less biased.As
an alternative, we could estimateVPD at each station first
and then interpolate the resulting VPD. However, the
relationship between elevation and temperature is clearer
than the relationship between VPD and elevation.
Interpolating temperatures first and using the resulting
interpolated temperatures allows us to resolve the
topographic influence on VPD. Regardless, all tested
methods represent an improvement over previous ver-
sions of daily interpolators because they use measured
dewpoint temperatures which do not require the estima-
tion of actual vapor pressures based on similarities
between dewpoint and minimum temperatures (Kimball
et al., 1997).

Errors in daily predictions of precipitation were high
for all three methods and little or no differences were
ascertainable between the three. Interpolation of daily
precipitation values is complicated by many factors.
Convective processes in summer create complex patterns
of precipitation as compared to broad-scale, frontal
winter precipitation patterns resulting in much higher
errors in the estimation of precipitation (Comrie and
Broyles, 2002). Also, the use of a single truncation
radius ignores that there is a different radius of influence
for small versus big precipitation events on a daily basis
(Skaugen, 1997).

Poor spatial resolution of available meteorological
data is a problem for many modeling studies (Cramer
et al., 1999; Mummery and Battaglia, 2002) but this
constraint is significantly reduced by SOGS. Point data
are independent of scale and one can generate surfaces
of these variables at any resolution provided that the
point data sufficiently resolve the spatial heterogeneity
of the process. The data products commonly available
to ecological modelers are the actual raster datasets; the
initial point data are rarely made available. If the spatial
scale of these raster datasets does not match the
resolution of other inputs, they are often resampled.
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Maximum Temperature (deg C)
< -15
-15 - -10
-9.9 - -5
-4.9 - 0

0 - 5
5.1 - 10

10.1 - 15

15.1 - 20
20.1 - 25
25.1 - 30

30.1 - 35

35.1 - 40
40.1 - 45

> 45

Minimum Temperature (deg C)
< -15
-15 - -10
-9.9 - -5
-4.9 - 0

0 - 5
5.1 - 10

10.1 - 15

15.1 - 20
20.1 - 25
25.1 - 30

30.1 - 35

35.1 - 40
40.1 - 45

45.1 - 50

Vapor Pressure Deficit (Pa)

< 100
100.1 - 200
200.1 - 300
300.1 - 400

400.1 - 500
500.1 - 750
750.1 - 1,000

1,000.1 - 1,500
1,500.1 - 2,000
2,000.1 - 2,500
2,500.1 - 3,000
3,000.1 - 3,500
3,500.1 - 4,000
4,000.1 - 4,500
> 4,500

Shortwave Radiation (W/m^2)
< 150
150.1 - 175
175.1 - 200
200.1 - 225

225.1 - 250
250.1 - 275

275.1 - 300
300.1 - 325
325.1 - 350
350.1 - 375
375.1 - 400
400.1 - 425
425.1 - 450
> 450

Precipitation (Cm)
< 0.1
0.11 - 0.2
0.21 - 0.3
0.31 - 0.4

0.41 - 0.5
0.51 - 0.6
0.61 - 0.7
0.71 - 0.8
0.81 - 0.9
> 0.9

Fig. 4. Example of two different spatial resolution tests for all five variables for May 4th, 2003 using NCDC Global Surface Summary of the Day

data. For this test, data were interpolated using the truncated Gaussian filter.
For example, Coops and Waring (2001) were required to
resample available raster weather data to match the
input of other parameters to their regional ecosystem
process model 3PG. Such resampling could significantly
bias the results of a model simulation (Pierce and
Running, 1995). When point data are stored, one does
not need to resample a previously created raster datasets
to a new resolution and risk introducing more bias. One
can easily switch the spatial resolution of the inputs to
SOGS and generate a new dataset at the appropriate
scale based on the original point data, thereby reducing
uncertainty in model inputs.

The cross-validation shortcut presented here repre-
sented a large increase in efficiency as station counts
increased. Without this shortcut, it would have been
very difficult to implement cross-validation for OK due
to the inordinate amount of time it would have required
for cross-validation of 1200 stations. This technique is
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fully generic and can be used anywhere users are
required to remove a row and column from an inverted,
symmetric matrix.

5. Conclusions

We have detailed a flexible system for the interpola-
tion of spatially explicit point data onto a user specified
grid with minimal user intervention. We have presented
the implementation of a system that will allow the
adaptation to new interpolation methods as they arise as
well as a system that is highly plastic in output
resolution. We have tested the adaptability of the system
to interpolation logic by implementing three separate
spatial interpolators and assessed the quality of the data
produced by each. We also presented examples of
varying the spatial resolution of the output data. This
system, we believe, represents an effective way of
increasing the application of ecological and hydrological
process modeling at a variety of landscape scales.
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